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Abstract

Skin immunization is effective against a number of infectious diseases, including smallpox and 

tuberculosis, but is difficult to administer. Here, we assessed the use of an easy-to-administer 

microneedle (MN) patch for skin vaccination using an inactivated rotavirus vaccine (IRV) in mice. 

Female inbred BALB/c mice in groups of six were immunized once in the skin using MN coated 

with 5 µg or 0.5 µg of inactivated rotavirus antigen or by intramuscular (IM) injection with 5 µg or 

0.5 µg of the same antigen, bled at 0 and 10 days, and exsanguinated at 28 days. Rotavirus-specific 

IgG titers increased over time in sera of mice immunized with IRV using MN or IM injection. 

However, titers of IgG and neutralizing activity were generally higher in MN immunized mice 

than in IM immunized mice; the titers in mice that received 0.5 µg of antigen with MN were 

comparable or higher than those that received 5 µg of antigen IM, indicating dose sparing. None of 

the mice receiving negative-control, antigen-free MN had any IgG titers. In addition, MN 

immunization was at least as effective as IM administration in inducing a memory response of 

dendritic cells in the spleen. Our findings demonstrate that MN delivery can reduce the IRV dose 

needed to mount a robust immune response compared to IM injection and holds promise as a 

strategy for developing a safer and more effective rotavirus vaccine for use among children 

throughout the world.
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1. Introduction

Group A rotavirus is a major cause of severe diarrhea in children less than 5 years of age 

and is responsible for an estimated 453,000 deaths per year worldwide [1]. Two licensed 

live oral rotavirus vaccines, RotaTeq® and Rotarix™, have shown high efficacy among 

infants in developed and middle-income countries [2,3], but are less effective in low income 

countries of Africa, Asia, and Latin America where a vaccine is needed most [4–8]. Both 

vaccines are also associated with a small risk of gastroenteritis and intussusception among 

vaccinated infants [9,10]. These limitations are believed to be due largely to the use of live 

vaccines administered via the oral route [11]. To address these problems, we are developing 

an inactivated rotavirus vaccine (IRV) for parenteral immunization as an alternative 

approach to oral vaccination for infants throughout the world [12,13]. We previously 

showed that thermally inactivated rotavirus when formulated with aluminum hydroxide was 

highly immunogenic in mice [14]. We further demonstrated that intramuscular (IM) 

administration of our candidate IRV, i.e., CDC-9, induced high immunogenicity and 

protection against infection from oral challenge with a virulent human rotavirus strain in 

gnotobiotic piglets [15].

While IM injection of IRV has been successful, there are ongoing efforts to further increase 

the delivery of this parenteral vaccine. Here, we hypothesized that vaccination in the skin 

could improve the immunogenicity and possible dose sparing of IRV because skin has a 

special immunologic network [16,17]. The skin is extremely rich in antigen-presenting cells 

(APCs) that include Langerhans cells (LCs), dermal dendritic cells (DCs), macrophages and 

monocytes, as well as accessory cells such as keratinocytes [17–19]. These APCs recognize, 

uptake, and present foreign antigens to T and B cells in the draining lymph nodes to initiate 

adaptive immune responses. Cutaneous immunization has been effective in preventing 

infectious diseases, such as smallpox, tuberculosis and rabies [17,20] and has achieved dose 

sparing for a number of vaccines compared to IM or subcutaneous (SC) injection [21]. In 

addition, vaccination using hypodermic needles requires trained medical personnel and thus 

has limitations for mass vaccination. Furthermore, the generation of bio-hazardous sharp 

wastes and the concern from needle-associated injuries and diseases are ongoing issues that 

could negatively impact vaccination coverage [22–24].

In this study, we investigated the use of microneedles (MNs) as a simple and reliable means 

to target IRV to the skin through the use of a patch that avoids the generation of hypodermic 

needle waste. MNs have been studied for the administration of a number of other vaccines 

and have shown evidence for dose sparing and increased immunogenicity compared to IM 

and SC delivery [25,26]. Using the tools of microfabrication, MN patches can be 

manufactured at low-cost for inexpensive mass production and can be administered 

painlessly, possibly by patients themselves.

2. Materials and methods

2.1. Preparation of IRV

CDC-9, a human G1P [8] rotavirus strain, was cultivated in Vero cells with roller bottle 

using Iscove’s Modified Dulbecco’s Medium (IMDM; Invitrogen, Grand Island, NY). 
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Triple-layered particles (TLPs) were purified from culture supernatants by CsCl gradient 

centrifugation and inactivated by heat at 60 °C for 4 h [14]. Inactivated TLPs were 

concentrated by ultracentrifugation to a concentration of 3 mg/ml using the Bradford method 

in Hanks’ balanced salt solution (HBSS) with CaCl2 and MgCl2 (Invitrogen) supplemented 

with 10% sorbitol (Sigma–Aldrich, St. Louis, MO) and stored at 4 °C before being coated 

onto MN arrays.

2.2. Fabrication of MN

MNs were fabricated from stainless steel sheets and coated with IRV using a procedure 

modified from a published study [27]. The MNs were 750 µm long and assembled in rows of 

5 MN each. For coating, the vaccine at a concentration of 3 mg/ml in HBSS was diluted 1:1 

with a coating buffer consisting of 15% w/v trehalose, 2% w/v carboxymethyl cellulose and 

1% w/v Lutrol F68 (all from Sigma–Aldrich) dissolved in deionized water. This solution 

was used to increase the viscosity and the wettability of the vaccine solution, and the 

trehalose helped stabilize the vaccine during drying. The MNs were coated using an 

automated coating station developed at the Georgia Institute of Technology. Each MN was 

dipped into a well containing the vaccine in coating solution 7 times and then allowed to air-

dry for approximately 5 min. The coated MNs were then placed in a sterile container which 

was sealed and stored overnight in a laminar flow hood. The seal was broken and the arrays 

were removed in the animal facility at the time of insertion. The needles were then packaged 

and stored at 25 °C overnight before use. To measure the amount of vaccine coated on each 

array of MNs, 6 arrays were put in a 0.5 ml tube and dissolved in 200 µl of phosphate-

buffered saline (PBS) in triplicate. The protein concentration in the eluate was measured by 

Micro BCA Protein Assay kit (Pierce Biotechnology). The average amount coated on a five-

needle MN array was 1 µg. Five of these arrays (i.e. a total of 25 MNs) were used to 

administer a 5 µg dose. To administer a 0.5 µg dose, the coating solution of 1.5 mg/ml IRV 

was used to prepare a single MN array with 0.5 µg IRV.

2.3. Immunization of mice

Female BALB/c mice (6–8 weeks old; Charles River Laboratories, Wilmington, MA) were 

used for the immunization study. All mice were anesthetized with 110 mg/kg ketamine 

(Ketathesia™, Butler Schein Animal Health, Dublin, OH) and 11 mg/kg xylazine (Anased®, 

Lloyd Laboratories, Shenandoah, IA) that were injected IM and were pre-bled from the 

submandibular vein with an animal lancet (Medipoint International, Mineola, NY). The hair 

on the back of the mice was shaved using electric sheers and the remaining hair was 

removed using a depilatory cream (Nair, Church & Dwight, Princeton, NJ). The area was 

then thoroughly cleaned using sterile water and alcohol swabs. After drying, mice in groups 

of six were immunized once by inserting IRV-coated MN (5 µg or 0.5 µg) on the back for 10 

min or once by injecting IM 5 µg or 0.5 µg of IRV in 100 µl of PBS into the upper 

quadriceps muscles. For controls, mice in groups of six were immunized once with MN 

prepared using coating solution without IRV or once IM with 5 µg of IRV reconstituted 

from MN in 100 µl PBS. Mice were bled on day 10 and exsanguinated on day 28, when 

spleens were removed and placed in tubes containing RPMI 1640 media.
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2.4. Measurement of cellular immune responses

Splenocytes were prepared as a cell suspension by gently pressing organ segments through a 

70 µm nylon cell strainer (BD Falcon, Franklin Lakes, NJ) using a plastic pipette and then 

passed through the mesh. Spleen cell suspensions were depleted of red blood cells using 

Tris–NH4Cl lysing buffer. The cells were washed twice with PBS plus 2% fetal bovine 

serum (Invitrogen, Grand Island, NY) and suspended in RPMI containing 20 mM HEPES, 

100 U/ml of penicillin, and 100 mg/ml of streptomycin plus 10% fetal bovine serum. The 

cells were stored at −80 °C before use.

Splenocytes were thawed, counted and used for stimulation assay for dendritic cell 

responses by flow cytometry [28]. The cells (2 × 106 cells/ml) in IMDM were stimulated 

with either 200 µl of the supernatants of CDC-9 (7 × 107 fluorescence focus unit/ml)-

infected Vero cells or 200 µl of the supernatants of mock-infected Vero cells (negative 

control). In addition, 10 µl of anti-CD28/anti-CD49d monoclonal antibody cocktail (BD 

Bio-sciences, San Diego, CA) was added to each sample as co-stimulator. Antigen 

stimulation was done in 15 ml polystyrene Falcon tubes (BD Falcon) by incubating at 37 °C 

with 5% CO2 for 5 h, followed by another 5 h incubation with the addition of brefeldin A 

(10 µg/ml; Sigma–Aldrich), which blocked the secretion of cytokines from the cells. The 

cells were then washed once with 1× IMag™ buffer (BD Biosciences) and treated with 2 

mM EDTA (Sigma–Aldrich) in PBS for 10 min to detach adherent cells. After washing with 

1× IMag™ buffer, the cells were fixed with 1% paraformaldehyde (Sigma–Aldrich) for 5 

min, washed, and then frozen at −70 °C in 1× IMag™ buffer with 10% dimethyl sulfoxide 

(Sigma–Aldrich) before use.

Frozen cells were thawed, washed once with 1× IMag™ buffer, and used for the purification 

of DCs using Dynabeads Mouse DC Enrichment Kit (Invitrogen Dynal AS, Oslo, Norway) 

according to the manufacturer’s instructions. The DCs (93% pure) were incubated with 1× 

BD FACS permeabilizing soultion 2 (BD Bio-science) for 10 min, washed with 1× IMag™ 

buffer, and then stained for 30 min in the dark using a five-color assay with the following 

combinations of conjugated monoclonal antibodies: (1) MHCII-PE-Cy7/CD11c-Alex 

Fluor700/CD205-PE/CD11b-APC/CD80-FITC, (2) MHCII-PE-Cy7/CD11c-Alex Fluor700/

CD205-PE/CD11b-APC/CD86-FITC, (3) MHCII-PE-Cy7/CD11c-Alex Fluor700/ B220-PE/

mPDCA1-APC/CD80-FITC, and (4) MHCII-PE-Cy7/CD11c-Alex Fluor700/B220-PE/

mPDCA1-APC/CD86-FITC. Cells were also stained with PE-labeled, isotype-matched 

control monoclonal anti-bodies. PE-Cy7, Alexa Fluor 700, FITC, APC conjugates were 

obtained from BD Biosciences; anti-CD205-PE and anti-mPDCA1-APC conjugates were 

obtained from Mitenyi Biotec (Auburn, CA); and anti-MHCII-PE-Cy7 conjugate was 

obtained from eBioscience (San Diego, CA). All monoclonal antibodies were titrated and 

used at optimal concentrations. Stained cells were analyzed using a LSR II (BD 

Biosciences) and 30,000–50,000 events were counted. Data were analyzed with FACSDiva 

software (BD Biosciences) [29].

2.5. Measurement of humoral immune responses

Rotavirus-specific IgG in pooled sera on day 0 and individual sera on day 10 and 28 were 

measured using a modified immunoassay, as described previously [14]. Briefly, 96-well 
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plates (Immulon 2; NalgeNunc, Rochester, NY) were coated with diluted rabbit hyper-

immune serum to rotavirus Wa at 4 °C overnight. After washing, the plates were incubated 

at 37 °C first with blotto (5% skim milk in PBS) as a blocking agent, and then with 

supernatants of rhesus rotavirus-infected MA104 cell cultures, followed by the addition of 

serially diluted mouse sera. Plates were further incubated sequentially with HRP-conjugated 

goat anti-mouse IgG antibody (Southern Biotech, Birmingham, AL). The color of reactions 

was developed with tetramethyl benzidine (TMB; Aldrich, Milwaukee, WI) substrate and 

stopped with 1 N HCl. The optical density (OD) at 450 nm was measured with an EIA 

reader (MRX Revelation, Dynex Technologies, Chantilly, VA). Antibody titer in a serum 

specimen was defined as the reciprocal of the highest dilution that gave a mean OD greater 

than the cutoff value (3 standard deviations above the mean OD of the blotto wells). 

Rotavirus-specific IgG subclasses in pooled sera on day 0, 10 and 28 were measured by EIA 

in the same manner, except for the use of HRP-conjugated goat anti-mouse IgG subclass 

antibody (Southern Biotechnology). The concentration of an IgG subclass in serum was 

calculated relative to the values of a standard curve, which was constructed with purified 

mouse IgG subclasses (Southern Biotechnology). The ratio of different IgG subclasses was 

determined on the basis of their concentrations in serum.

Rotavirus-specific neutralizing activity was measured against Wa rotavirus using a modified 

microneutralization assay [14,30]. Mouse sera were serially diluted two-fold in duplicate 

wells of 96-well plates and incubated with 600 fluorescence focus units (ffu) of Wa per well 

for 1 h. MA104 cells in IMDM supplemented with a concentration of 10 µg/ml trypsin 

(Invitrogen) and 0.5% chicken serum (Invitrogen) were added to each well. After incubation 

at 37 °C in a CO2 incubator for 3 days, the plates were fixed with formalin. Rotavirus 

antigens were detected with a rabbit anti- Wa hyperimmune serum, HRP-labeled anti-rabbit 

IgG and then TMB. Neutralizing antibody titer was defined as the reciprocal of the highest 

dilution that gave a greater than 70% reduction in the absorbance value compared with that 

in virus-only controls.

2.6. Statistics

Statistical analysis was performed with PASW Statistics 18 (SPSS Inc., Chicago, IL) using 

nonparametric tests. Differences in results between different groups of animals were 

compared with the one way ANOVA test. Significance was established if P was <0.05.

3. Results

3.1. Structural and antigenic integrity of TLPs after coating on MN

After preparing IRV-coated MN, we assessed the structural integrity of the IRV by electron 

microscopy after reconstitution, and observed similar intact TLPs in coating buffer before 

coating onto MN and in PBS after elution from coated MN (Fig. 1A). To examine whether 

eluted IRV maintained antigenicity, we compared reactivities of TLPs before and after 

coating by EIA using rabbit hyperimmune serum to the human rotavirus strain Wa and 

demon-strated similar absorbance values in both preparations (Fig. 1B). These results 

indicate that inactivated rotavirus TLPs in coating buffer can survive drying on MN and, 

more importantly, MN coating does not appear to alter structural integrity and antigenic 
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reactivities of our IRV. Our findings agree with those of an experimental influenza vaccine 

in which a similar formulation was used to coat MN and similar antigen integrity was 

maintained after coating [27].

3.2. Cellular immune responses after IRV vaccination with MN

We next vaccinated mice in groups of six and assessed the response of DCs to IRV in 

spleens of vaccinated mice, as the effector phenotype of DCs is known to influence T and B 

cell responses to microbial infection and vaccination [31]. We determined the phenotype 

subset of DCs by measuring the expression of surface markers CD11b and CD205 or B220 

and mPDCA and the maturation and activation by detecting the expression of CD11c and 

the co-stimulatory marker CD80 or CD86 [32,33] in total splenocytes from mice that were 

exsanguinated 28 days post vaccination, following the stimulation of cells with the CDC-9 

strain (Fig. 2). Representative FACS plots are shown for phenotype myeloid DCs (mDC) 

and matured mDC expressing CD80 or CD86 from splenocytes of mice that received MN 

vaccination with 5 µg IRV (Fig. 2A). Both MN and IM immunizations with IRV appeared to 

induce a memory response for the activation of mDCs (Fig. 2B.) IRV of high and low doses 

administered by MN or IM induced an increase in the proportions of mDCs expressing 

CD80 compared to that from mock-infected mice. By contrast, except for a slight increase in 

mice receiving MN vaccination with 5 µg IRV, there was no apparent increase in the 

percentages of mDCs expressing CD86 in the spleens of mice that received the low-dose 

(0.5 µg) MN vaccination or any of the IM vaccinations, when compared to that from mock-

infected mice (Fig. 2C). These results indicate that IRV vaccination by MN and IM 

administration appeared to induce a recall response for the activation of mDCs. In contrast, 

we did not see evidence for the activation of plasmacytoid DCs (pDCs) in spleens of mice 

(data not shown). We also assessed T-cell proliferation in response to MN or IM vaccination 

and observed no apparent activation of CD4+ and CD8+ T lymphocytes in spleens of IRV-

vaccinated mice compared to those from mock-inoculated mice (data not shown).

3.3. Humoral immune responses after IRV vaccination with MN

To compare the immunogenicity and assess possible dose-sparing effects of IRV vaccination 

in the skin using MN and by IM delivery using a hypodermic needle, we measured 

rotavirus-specific total IgG in serum specimens collected from mice on day 0, 10 and 28 

(Fig. 3A). Except for mice that were mock immunized with vaccine-free MN and had no 

detectable IgG throughout the period of study, all mice in the vaccinated groups developed 

IgG response that increased in a time- and dose-dependent manner. Mice that received a 

single high dose of 5 µg IRV with MN had significantly higher levels of IgG than those in 

groups that received a single dose (IM 5 µg, IM 5 µg reconstituted from MN, MN 0.5 µg and 

IM 0.5 µg) at day 10 (p < 0.05). On day 28, mice that were vaccinated using MN at antigen 

dose of 5 µg or by IM route at 5 µg or 5 µg reconstituted from MN had similar levels of IgG. 

Significant higher IgG titers were seen with MN than IM route at low dose (p < 0.05). 

Notably, the low-dose MN vaccination generated a similar IgG titer as the high-dose IM 

vaccination on both days 10 and 28, indicating strong dose sparing associated with MN 

vaccination in the skin.
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We measured titers of neutralizing activity in sera of mice at 28 days after immunization 

(Fig. 3B). Mice vaccinated using MN at high dose of 5 µg had significantly higher levels of 

neutralizing activity in sera than those that were immunized IM at high or low dose, or using 

MN at low dose (p < 0.05). Higher levels of neutralizing activity were seen in mice that 

were vaccinated IM at 5 µg or 5 µg reconstituted from MN than at 0.5 µg, which induced a 

low level of neutralizing activity similar to that in mock-immunized mice, but the 

differences were not statistically significant. Again, high-dose MN vaccination generated 

stronger neutralizing activity than high-dose IM vaccination and low-dose MN vaccination 

generated equivalent neutralizing activity to high-dose IM vaccination, indicating dose-

sparing effects.

We last examined rotavirus-specific IgG subclasses and the type of Th cell response by 

determining the levels of IgG1 and IgG2a using EIA. MN-immunized mice had comparable 

or higher levels of IgG1 and IgG2a than those that received IRV by IM administration (Fig. 

4A and B). IgG2a titers were higher than IgG1 titers in all vaccinated mice except those that 

received low-dose IM vaccination (Fig. 4C). These results indicate that IRV administered by 

MN and IM elicited both Th1 and Th2 responses and that Th1 cells were generally 

dominant.

4. Discussion

This study demonstrated for the first time that IRV administered to skin using a MN patch is 

effective in inducing robust immune response in mice. This initial finding could pave the 

way for the development of a low-cost and effective patch-based IRV. Notably, we observed 

similar immunogenicity of IM administered IRV and IRV reconstituted from coated MN, 

demonstrating that MN coating did not appear to alter the integrity of viral particles and the 

antigenicity of IRV. Of interest, a very low dose (0.5 µg) of IRV administered by MN 

inoculation induced antibody titers at least as strong as those from 5 µg of IRV by IM 

administration, demonstrating that MN delivery has apparent dose sparing effects. MN 

immunization also induced higher titers of rotavirus-specific IgG and neutralizing activity 

than IM immunization at the same dose, demonstrating that MN delivery has the potential to 

enhance the immunogenicity of IRV. Finally, MN and IM delivery appeared to be equally 

effective in inducing a recall response in a subset of DCs, suggesting that epidermal 

Langerhans cells and dermal DCs might uptake the vaccine in the skin and upon stimulation 

and subsequent activation, migrate as matured mDCs to lymphoid organs such as the lymph 

nodes and spleen. This type of anamnestic response could help maintain sustainable 

systemic immunity and protection against rotavirus infection.

We found that both MN and IM administration of IRV in the same formulation induced a 

generally higher level of IgG2a than IgG1, thus a slightly more Th1 type of response. This 

differential immune profile may result from virus–host interactions under varying conditions 

or environments. For example, some DCs when stimulated and activated are more likely to 

induce Th1 type response, whereas macrophages tend to induce Th2 type response [34]. The 

type of IgG subclass induced by vaccination has been reported to reflect the quality of 

immune response and influence the protection against rotavirus and other viral infections in 

animals [30,35].
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In the present study, we compared the immunogenicity of IRV by MN and IM 

administration in the absence of an adjuvant in mice. Since adjuvant is often used to enhance 

immune response to IM-administered vaccine and lower the amount of antigen needed, it 

will be important to test in a future study if MN delivery of IRV without adjuvant can still 

induce a comparable or better immune response compared to adjuvanted IM vaccine. As we 

previously reported that at least two immunization regimens are needed to prime the host 

and boost immune responses [14], we plan to evaluate the number of doses required to 

augment the titers of antibody, particularly neutralizing activity in serum of vaccinated 

animals. Studies are also warranted to investigate whether MN and IM immunization of IRV 

can induce equivalent protection against oral challenge with virulent homotypic and 

heterotypic human strains in gnotobiotic piglets [15].

In conclusion, as the first study to research skin vaccination with IRV, we demonstrated that 

a single dose of IRV administered with a MN patch induced robust immune responses in 

mice. Anti-body titers were generally higher after MN delivery compared to IM injection. 

Dose sparing was shown, such that low-dose (0.5 µg) MN vaccination generated antibody 

responses at least as strong as high-dose (5 µg) IM vaccination. MN and IM delivery 

appeared to be equally effective in inducing a recall response in a proportion of circulating 

mDCs in the spleen. Overall, these data provide the first proof-of-principle that a MN patch 

may enable IRV vaccination with increased immunogenicity, dose sparing, simple 

administration and avoidance of hypodermic needles.
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Fig. 1. 
Stability and antigenicity of inactivated rotavirus particles coated on MN. A: Electron 

micrographs of inactivated CDC-9 IRV particles before coating (left) and after 

reconstitution from MN one day after coating (right). Triple-layered CDC-9 particles were 

stained with phosphotungstic acid and examined with an electron microscope. Bar = 100 

nm. The central image shows two MN devices each with a row of five MN (circle shows a 

five-MN array). B: Levels of rotavirus antigen detected in original and reconstituted 
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preparations by EIA. Similar levels of absorbance in original and reconstituted CDC9 

preparations were observed. A blank was tested as a negative control.
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Fig. 2. 
Phenotype and maturation of DCs in the spleens of mice that received IRV by MN and IM 

administration. Splenocytes were stimulated with rotavirus, purified for DCs, and examined 

for the expression of surface and co-stimulatory markers CD11c, CD80 and CD86 as 

described in the text. A: Representative FACS plots showing the phenotype and maturation 

expressing CD80 and CD86 of mDCs in the spleens of mice 28 days after receiving 5 µg of 

IRV using a MN patch, following in vitro stimulation with rotavirus. B and C: Proportions 

of activated mDCs with CD80 or CD86 expression in stimulated splenocytes of mice 28 

days after receiving IRV by MN or IM administration. The character “*” indicates IRV 

reconstituted from coated MN.
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Fig. 3. 
Rotavirus-specific IgG (A) and neutralizing activity (B) in sera of vaccinated mice. Mice (n 

= 6 per group) were immunized with MN coated with 5 µg, 0.5 µg, or 0 µg (mock) of IRV or 

by IM injection with 5 µg or 0.5 µg of IRV, or 5 µg of IRV reconstituted from coated MN. 

Serum samples collected at days 0, 10 and 28 after vaccination were analyzed for IgG and 

sera collected on day 28 were examined for neutralizing activity as described in the text. The 

character “*” indicates IRV reconstituted from coated MN. Error bars show standard 

deviation.
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Fig. 4. 
IgG subclasses IgG1 (A) and IgG2a (B) in sera of mice that received IRV by MN or IM 

administration. Pooled sera on day 28 were tested by EIA for IgG1 and IgG2a as described 

in the text. Data showing the ratio of IgG2a and IgG1 are shown in panel C. The character 

“*” indicates IRV reconstituted from coated MN.
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